Output Ripple Voltage for Buck Switching Regulator (Rev. A)

نویسنده

  • Surinder P. Singh
چکیده

Switched-mode power supplies (SMPSs) are used to regulate voltage to a certain level. SMPSs have an inherent switching action, which causes the currents and voltages in the circuit to switch and fluctuate. The output voltage also has ripple on top of the regulated steady-state DC value. Designers of power systems consider the output voltage ripple to be both a key parameter for design considerations and a key figure of merit. The online WEBENCH® Power Designer recognizes the key importance of peak-to-peak voltage output ripple voltage—the ripple voltage is calculated and reported in the visualizer [1]. This application report presents a closed-form analytical formulation for the output voltage ripple waveform and the peak-to-peak ripple voltage. This formulation is accurate over all regions of operation and harmonizes the peak-to-peak ripple voltage calculation over all regions of operation. The new analytical formulation presented in this application report gives an accurate evaluation of the output ripple as compared to the simplified linear or root-mean square (RMS) approximations often used. In this application report, the analytical model for output voltage waveform and peak-to-peak ripple voltage for buck is derived. This model is validated against SPICE TINA-TI simulations. This report presents the behavior of ripple peak-to-voltage for various input conditions and choices of output capacitor and compare it against SPICE TINA-TI results. This report analyzes and presents the validity of the linear and the RMS approximation. Examples from the TI portfolio are presented that compare the experimental ripple waveforms in different regimes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A High Efficiency Low-Voltage Soft Switching DC–DC Converter for Portable Applications

This paper presents a novel control method to improve the efficiency of low-voltage DC-DC converters at light loads. Pulse Width Modulation (PWM) converters have poor efficiencies at light loads, while pulse frequency modulation (PFM) control is more efficient for the same cases. Switching losses constitute a major portion of the total power loss at light loads. To decrease the switching losses...

متن کامل

A novel current mode buck regulator with fast transient response using derivative ripple voltage in 180 nm

An integrated buck converter that operates under low voltage environment with fast transient response is presented. The designed buck regulator employs derivative output ripple voltage for sensing current. It is targeted to be fabricated with 180nm UMC technology at 2MHz switching frequency. The response time is less than 2.2μ Sec. The regulator provides an output voltage of 1.8V against the ba...

متن کامل

A New Topology of Bidirectional Buck-Boost dc/dc Converter with Capability of Soft Switching and input Current Ripple Cancellation

In this paper, a new bidirectional buck-boost dc-dc converter with capability of soft switching and zero input current ripple is proposed. The coupled inductor is used in the proposed converter to eliminate the input current ripple. In the proposed converter, zero voltage switching (ZVS) and zero current switching (ZCS) can be obtained for the main and auxiliary switches, respectively. In addit...

متن کامل

Introduction to the Series Capacitor Buck Converter (Rev. A)

The series capacitor buck converter is a dc-dc converter topology that uniquely merges a switched capacitor circuit and a multiphase buck converter. Many of the challenges faced by conventional buck converters are overcome by this converter topology. This enables efficient, high frequency operation and significantly smaller solution size. The series capacitor buck converter has beneficial chara...

متن کامل

An Improved Control Method Based on Modified Delta-Sigma Modulator for Buck Converter

This paper proposes an improved control method based on modified Delta-Sigma Modulator (DSM) to enhance transient response and improve harmonic contents of buck DC-DC converter. The main advantages of the proposed method are improving the output voltage frequency spectrum, correction of the output voltage harmonic contents and sideband harmonics, reduction of switching noise peaks at the output...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014